33

Soil Microorganisms and Nematodes for Bioremediation and Amelioration

Gulan, L., Biljana, M., Tijana, Z., Gordana, M., & Biljana, V., (2017). Persistent organic

pollutants, heavy metals and radioactivity in the urban soil of Priština City, Kosovo and

Metohija. Chemosphere, 171, 415–426. Elsevier.

Guo, H., Shenglian, L., Liang, C., Xiao, X., Qiang, X., Wanzhi, W., Guangming, Z., et

al., (2010). Bioremediation of heavy metals by growing hyperaccumulator endophytic

bacterium Bacillus Sp. L14. Bioresource Technology, 101(22), 8599–8605. Elsevier. doi:

10.1016/j.biortech.2010.06.085.

Haghollahi, A., Mohammad, H. F., & Mahin, S., (2016). The effect of soil type on the

bioremediation of petroleum contaminated soils. Journal of Environmental Management,

180, 197–201. Elsevier.

Harekrushna, S., & Das, C. K., (2012). A review on: Bioremediation. International Journal of

Research in Chemistry and Environment, 2(1), 13–21.

Harrington, A. J., Talene, A. Y., Sunny, R. S., Kim, A. C., & Guy, A. C., (2012). Functional

analysis of VPS41-mediated neuroprotection in Caenorhabditis elegans and mammalian

models of Parkinson’s disease. Journal of Neuroscience, 32(6), 2142–2153. Soc

Neuroscience.

He, L., Huan, Z., Guangxia, L., Zhongmin, D., Philip, C. B., & Jianming, X., (2019).

Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks

and applications in China. Environmental Pollution, 252, 846–855. Elsevier. doi: 10.1016/j.

envpol.2019.05.151.

Hooda, V., (2007). Phytoremediation of toxic metals from soil and wastewater. Journal of

Environmental Biology, 28(2), 367. Citeseer.

Hrács, K., Zoltán, S., Anikó, S., Lola, V. K., Ibolya, Z. P., Ákos, K., Gyula, Z., & Péter, N.,

(2018). Toxicity and uptake of nanoparticulate and bulk ZnO in nematodes with different life

strategies. Ecotoxicology, 27(8), 1058–1068. Springer. doi: 10.1007/s10646-018-1959-8.

Huang, D., Wenjing, X., Guangming, Z., Jia, W., Guomin, C., Chao, H., Chen, Z., et al.,

(2016). Immobilization of Cd in river sediments by sodium alginate modified nanoscale

zero-valent iron: Impact on enzyme activities and microbial community diversity. Water

Research, 106, 15–25. Pergamon. doi: 10.1016/j.watres.2016.09.050.

Huang, G. H., Feng, C., Dong, W., Xue, W. Z., & Gu, C., (2010). biodiesel production

by microalgal biotechnology. Applied Energy, 87(1), 38–46. Elsevier. doi: 10.1016/j.

apenergy.2009.06.016.

Huo, W., Chun, H. Z., Ya, C., Meng, P., Hui, Y., Lai, Q. L., & Qing, S. C., (2012). Paclobutrazol

and plant-growth promoting bacterial endophyte Pantoea Sp. enhance copper tolerance of

guinea grass (panicum maximum) in hydroponic culture. Acta Physiologiae Plantarum,

34(1), 139–150. Springer. doi: 10.1007/s11738-011-0812-y.

Hurlbert, S. H., (1971). the nonconcept of species diversity: A critique and alternative

parameters. Ecology, 52(4), 577–586. John Wiley & Sons, Ltd. doi: 10.2307/1934145.

Hyman, M., & Ryan, D. R., (2001). Groundwater and Soil Remediation. American Society of

Civil Engineers. doi: 10.1061/9780784404270.

Jabeen, H., Samina, I., Fiaz, A., Muhammad, A., & Sadiqa, F., (2016). Enhanced remediation

of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial

endophyte Mezorhizobium Sp. HN3. International Journal of Phytoremediation, 18(2),

126–133. Taylor & Francis. doi: 10.1080/15226514.2015.1073666.

Jaganathan, D., Karthikeyan, R., Gothandapani, S., Shilpha, J., & Gayatri, V., (2018). CRISPR

for crop improvement: An update review. Frontiers in Plant Science. Frontiers media S.A.

doi: 10.3389/fpls.2018.00985.